How to use Technologies offered

A search for a cancer, preclinical stage, synthetic opportunity would use the selection "Therapeutics, Diagnostics" in 'Sector', 'Cancerous, neoplasmatic' in 'Disease Category', 'Drugs, Small Molecule' in 'Technology' and 'Preclinical' in 'Development Stage'.

Selection of 'Enabling Technology, Platform Technology' in 'Sector' will identify all kinds of research technologies that can be used in more areas of life sciences than pharmaceuticals only.

Each technology profile gives the name of a company or academic institute as source of the offer, and a link allowing to contact the potential licensor. In most cases a profile includes a pdf covering the available non-confidential information as well as detailed contact data.

Registered users can create non-public notifications profiles which will inform them about new 'Technologies Offered' entries fitting their needs as specified. In addition these profiles allow them to filter the available information more comfortably.

Name

FGB1 as a New Molecular Probe for Fungi

Organization name

PROvendis GmbH

Profile

Invention

Chitin is the best studied fungal microbe-associated molecular pattern (MAMPs). However, the most abundant building block of fungal cell walls is β-glucan, which makes up 50-60% of the dry weight. Whereas β-1,3-glucose chains can also be found in the cell wall of plants, polymers containing β-1,6-glycosidic bonds have only been found in the cell wall of fungi and members of the phylum Stramenopiles, such as in some genera of oomycetes. There it is proposed that the β-1,6-glycosidic bonds are responsible to connect glucan chains and link these also to chitin.

The multibranched β-glucans can be firmly bound to the cell wall or loosely bound and accumulate around the fungus as slime or gelatinous material. The inventors identified a novel type of lectin domain in a so far uncharacterised fungal protein – further referred to as FGB1 (fungal glycan binding 1). FGB1 specifically binds β-1,6-glycosidic bonds with high affinity. A conjugate of FGB1 and a detectable label can be used as a tool to detect the presence of microorganisms having β-1,6-glycosidic bounds.

Commercial Opportunities

Some lectins like WGA, which detects chitin (and other carbohydrate polymers), are used as versatile probes for detecting glycoconjugates in histochemical and flow cytometric applications and for localizing glycoproteins in gels. So far, none of the lectins characterised bind specifically to β-1,6-glycosidic bounds. Therefore, FGB1 is a valuable tool to study fungal and oomycete cell wall development and composition.

As FGB1 represents a tool to detect the presence of microbes in complex mixtures, it could also function for the diagnosis of human infections caused by fungal and oomycete pathogens.

In addition, the biochemical properties of FGB1 suggest that it could be an ideal platform to engineer molecules with specific and novel carbohydrate binding properties.

It is imaginable that a fusion protein of FGB1 and a fungicide would significantly increase the effect of such fungicide as it would stick the effector to the microbe.

Competitive Advantages

  • β-1,6-glucan is an important fungal MAMP
  • Easy detection of microbes and glucans containing β1,6 glycosidic linkages in complex mixtures
  • Useful as a research tool for histochemical and flow cytometric applications and for localizing glycoproteins
  • Useful for medical diagnostic purposes
  • Fusion proteins might be useful in medical or agricultural applications
  • Easy application

Competitive Advantages

  • β-1,6-glucan is an importantfungal MAMP
  • Easy detection of microbesand glucans containing β1,6glycosidic linkages incomplex mixtures
  • Useful as a research tool forhistochemical and flowcytometric applications andfor localizing glycoproteins
  • Useful for medicaldiagnostic purposes Fusion proteins might beuseful in medical oragricultural applications
  • Easy application

Current Status                                                                                                       

The detection of β-1,6-glycosidic bounds with a conjugate of FGB1 and a detectable label has successfully been tested on different types of fungi in a variety of complex samples.

On behalf of the University of Cologne, PROvendis offers access to rights for commercial use as well as the opportunity for further co-development. We will be pleased to inform you about the current patent Status.

Relevant Publication

Fesel, P. and Zuccaro, A. (2016) β-glucan: Crucial component of the fungal cell wall and elusive MAMP in plants. Fungal Genetics and Biology. 90, 53-60

Wawra, S. et al (2016) The novel fungal specific β-glucan binding lectin FGB1 alters susceptibility to cell wall stress and prevents glucan-triggered immunity in plants. Nature Communications. 13188, DOI: 10.1038

To view the contact information, attachments and url of this profile you have to login into your account or register a new account: Login Register

Your feedback

Please click here to log in to view the complete profile.

 
 

latest entries